
Under Construction:
A Hex Viewer And Editor
by Bob Swart

The past few months have been
about component manage-

ment and workgroup management.
But what about component devel-
opment? We haven’t seen a lot of
those nice little components lately,
have we? This time, I’m going to
make it up to you with two new
components for both versions of
Delphi: a Hex Viewer and Editor, for
unlimited filesizes...

A hexadecimal file viewer com-
ponent (TBHexViewer) would have
to work on files with a practically
unlimited file size: that’s the first
problem we need to solve! Apart
from that, a visual way to display
the binary data, with a textual
representation on the side, would
be most welcome, to prepare for a
hex viewer with edit or overwrite
capabilities (TBHexEditor).

FileSize
Delphi 1.0’s 16-bit TMemo compo-
nent can only hold files up to about
32Kb in size. This is useful for small
memos and a few hundred lines,
but for really big files it’s no good.
Even Delphi 2.0 does not solve this
problem, because the TMemo com-
ponent is wrapped around the
Windows edit control, which in
turn is limited to 32Kb even on the
supposedly “32-bits” Win95. Only
when run on the true 32-bits oper-
ating system Windows NT do we
finally get a TMemo that is capable of
holding nearly 2Gb of text. And at
this time, only on a small amount of
Delphi users are running NT.

Since our file viewer needs to be
able to view files of nearly unlim-
ited size (I consider a filesize of 2Gb
to be nearly unlimited – I don’t even
have the disk space to store a file
of this size [I’ve got 6.5Gb on my
new machine gloats the Editor...
<grin>]), we cannot use a TMemo to
derive our browsing component
from. We need to do something
special.

In order to be able to view files
up to 2Gb in size, it is not practical
to keep the entire file in memory
while browsing. Nobody I know
would have the required amount of
memory available anyway (not on
a personal computer). And while
Windows NT, in theory, offers us
the virtual memory needed to load
a 2Gb file, it would only lead to a
2Gb swap file.

Instead, we need to use views on
certain portions of the file. And
while browsing through the file, we
load a certain portion on demand.
If we make sure the portions are big
enough and loading them is quick
enough, the end-user won’t notice
any difference whatsoever. This
idea is not new, of course, but
based on the old memory paging
algorithm of operating systems
such as UNIX.

Pages?
A file of 2Gb translates into 64
pages of 32Kb, 1024 pages of 2Kb,
or 8K pages of 256 bytes. For a hex

file viewer with a view window that
holds 256 characters at a time we
can set the page size to 256 bytes
and have a maximum of 8K pages.
Of course, file buffering can be
used to make sure we don’t actu-
ally have to read in a page of 256
bytes every time we scroll from
page to page. We can define a type
TBlock and use a property called
Block to hold the data of the
current page (block) of 256 bytes:

Const
 BlockLine = 16;
 BlockChar = 16;
 BlockSize = BlockLine *
 BlockChar; { 16x16 = 256 }
Type
 TBlock =
 Array[1..BlockSize] of Byte;

The page number, between 0 and
8K (or even higher), can be used to
find the offset in the file where the
next page starts (ie page 0 starts at
offset 0, page 1 at offset 256, page 2
at offset 512, etc).

unit first;
{$I+ will raise IO-exceptions when needed }
interface
uses
 WinTypes, WinProcs, SysUtils, Classes;
Const
 BlockLine = 16;
 BlockChar = 16;
 BlockSize = BlockLine * BlockChar; { 16 x 16 = 256 }
Type
 TBlock = Array[1..BlockSize] of Byte;
 TBFile = class(TComponent)
 private
 FFileName: TFileName;
 FFile: File;
 FOffset: LongInt; { 0, 256, 512, ... 2G }
 FBlock: TBlock; { data from FFile }
 FSize: Cardinal; { actual size of data in FBlock <= BlockSize }
 protected
 procedure SetFileName(AFileName: TFileName); virtual;
 procedure SetOffset(AnOffset: LongInt); virtual;
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 published
 property FileName: TFileName read FFileName write SetFileName;
 property Offset: LongInt read FOffset write SetOffset default 0;
 end {TBFile};

➤ Listing 1

26 The Delphi Magazine Issue 12

The Engine
Our first attempt, called TBFile, is
a component which consists of
FileName and Offset properties,
which together with a hidden field
FFile define the contents of the
FBlock field.

The type definition of the TBFile
component is shown in Listing 1
(note that this is just a dummy
component for now). The two
properties FileName and Offset are
used as the design time interface
(in the Object Inspector for exam-
ple), while the internal field FFile is
used to hold a file pointer and
FBlock contains the actual data.

In the constructor we need to set
all fields to unused values, while
the destructor must check to see if
a filename is assigned (and hence if
a file is open) to make sure to close
the file before the TBFile object is
destroyed. See Listing 2.

The FileName property reads
from the hidden field FFileName and
writes with help from a SetFileName
method (Listing 3). This method
not only assigns the filename to the
FileName property, it also closes
the previous file (if any) and opens
up the FFile file field. It uses the
FileMode flag $42 for this (which
means Read/Write Deny None in
sharing mode).

Note that Delphi 2 has a bug
which ignores the sharing flags, so
any file opened with this compo-
nent compiled with Delphi 2 will be
locked and not available for others.
For a fix for this FileMode problem,
please consult Dr.Bob’s Delphi
Clinic on the World Wide Web at
http://www.pi.net/~drbob/

In case we can’t open the file, an
exception is raised and handled,
after which we set the filename
back to an empty ’’. So, if at any
time the filename is not empty we
know the file is open.

Once we have an open file, we
can read blocks from it. We do this
by assigning values to the Offset
variable (Listing 4).

Note that we use exceptions in a
try-except block to check for I/O
errors. Alternatively, we could
specify {$I-} and check IOResult.
The latter is a little bit faster, but
would mix the algorithm with the
error handling code itself.

Visual Hex
The non-visual component TBFile
can read a file up to 2Gb in blocks
of 256 bytes. However, the blocks
are only kept in the hidden FBlock
field and nothing useful is done
with them. In fact, nothing indi-
cates that the component is in fact
reading the whole file. We now
need to design and implement the
component user interface.

Earlier in this column, we men-
tioned the sad fact that a TMemo
component was limited to 32Kb of
text. Now that we’re limited to
pages of only 256 (binary) charac-
ters, it’s time to reconsider the
TMemo component. We must realise,
however, that not only do we need
to display the hexadecimal values
of the 256 byte block, we must also
display the address (offset) in the

constructor TBFile.Create(AOwner: TComponent);
var i: Integer;
begin
 inherited Create(AOwner);
 FFileName := ’’;
 FOffset := 0;
 FSize := 0
end {Create};

destructor TBFile.Destroy;
begin
 if FFileName <> ’’ then Close(FFile);
 inherited Destroy
end {Destroy};

➤ Listing 2

procedure TBFile.SetFileName(AFileName: TFileName);
begin
 if FFileName <> ’’ then begin
 FFileName := ’’;
 FOffset := 0;
 FSize := 0;
 System.Close(FFile)
 end;
 System.Assign(FFile,AFileName);
 try
 FileMode := $42; { read/write, deny-none }
 System.Reset(FFile,1);
 FFileName := AFileName { success! }
 except
 FFileName := ’’
 end;
 Offset := 0
end {SetFileName};

➤ Listing 3

procedure TBFile.SetOffset(AnOffset: LongInt);
begin
 AnOffset := AnOffset AND NOT BlockLine; { skip lower bits }
 if (AnOffset <> FOffset) or (AnOffset = 0) or (FOffset = 0) then begin
 FOffset := AnOffset;
 FillChar(FBlock,SizeOf(FBlock),#0);
 if FFileName <> ’’ then
 try
 Seek(FFile,FOffset);
 BlockRead(FFile,FBlock,SizeOf(FBlock),FSize);
 except
 FOffset := 0;
 FSize := 0
 end
 else begin
 { FFileName = ’’ }
 FOffset := 0;
 FSize := 0
 end
 end
end {SetOffset};

➤ Listing 4

August 1996 The Delphi Magazine 27

file and format the output to a nice
16x16 display. Maybe a memo isn’t
so useful for this approach after all.
We’re looking for a kind of table,
something like a StringGrid.

Let’s consider a StringGrid with
17 rows and 18 columns (16x16 for
the data, one extra row and column
in for the captions and a column to
display the data in text format).
Using a fixed font and predefining
the width of each column, we can
come up with a nice display as
shown in Figure 1.

So, we need to derive our TBFile
from a TStringGrid class. The modi-
fied type definition of TBHexViewer,
based on TBFile but derived from
TStringGrid, is shown in Listing 5.

Note that all hidden fields are
private (ie accessible only from
within the same class or unit, and
we don’t put anything else in the
unit of course), except for the
FAbout field, since I know before-
hand that I would like to get to this
field from a derived class. And at
this time it doesn’t seem necessary
to allow a derived class get to the
other hidden fields.

The constructor of TBHexViewer
needs to call the inherited con-
structor of the StringGrid, set the
row and column count and sizes
and set the labels for the headers
(the hex values $1 through $0). See
Listing 6.

The destructor is the same as the
one we wrote for TBFile: just close
the file if there is one open. The
SetOffset, on the other hand, has
changed somewhat. The first part
is still the same and deals with
reading in the new FBlock from the
file (at the specified offset). The
second part is new and consists of
formatting the raw data in hex
values and text representations in
the Cells array-property of the
StringGrid itself. See Listing 7.

We need to override the
SelectCell method to indicate that
column 17 (with the textual repre-
sentation) cannot be selected:

function TBHexViewer.SelectCell(

 ACol, ARow: Longint): Boolean;

begin

 Result := inherited SelectCell(

 ACol,ARow) and (ACol <> 17)

end {SelectCell};

➤ Figure 1

TBHexViewer = class(TStringGrid)
 private
 FFile: File;
 FFileName: TFileName;
 FOffset: LongInt; { 0, 256, 512, ... 2G }
 FBlock: TBlock; { data from FFile }
 FSize: Cardinal; { actual size of data in FBlock }
 procedure KeyDown(var Key: Word; Shift: TShiftState); override;
 protected
 FAbout: String;
 procedure SetFileName(AFileName: TFileName); virtual;
 procedure SetOffset(AnOffset: LongInt); virtual;
 procedure SetSize(unused: Cardinal); { do nothing }
 procedure SetAbout(unused: String); { do nothing }
 function SelectCell(ACol, ARow: Longint): Boolean; override;
 { this function does *not* work when declared private... }
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 published
 property FileName: TFileName read FFileName write SetFileName;
 property Offset: LongInt read FOffset write SetOffset default 0;
 property Size: Cardinal read FSize write SetSize default 0;
 property About: String read FAbout write SetAbout;
 end {TBHexViewer};

➤ Listing 5

Finally, we need a way to browse,
ie a way for the user to specify that
the offsets need to be changed and
the next page (or block) of the file
needs to be shown. For this, we can
look at the keyboard KeyDown event
and simply react at the PgUp and
PgDown events. In the case of a PgUp,
we decrease the OffSet by the
BlockSize (if possible), in the case
of a PgDown we increase it by the
same amount.

And we’ve seen before that a
change to the value of the OffSet
property will automatically load
the new correct block, which will
also set new values to the cell prop-
erties and will hence update the
screen. See Listing 8.

Hex Edit
Viewing a file in hex mode is one
thing. Editing the file is something
else. For one thing, how do we in-
sert or delete some bytes if the
entire file is not kept in memory?
Well, the techniques for this would
take too long to explain here, so
let’s limit ourselves to a Hex
Overwriter for now...

TBHexEditor
Listing 9 shows the definition and
constructor for TBHexEditor. The
constructor calls the inherited con-
structor of TBHexViewer and then
sets a few properties to their
special value, like the FChanged field
(to False, nothing has changed so

28 The Delphi Magazine Issue 12

constructor TBHexViewer.Create(
 AOwner: TComponent);
var i: Integer;
begin
 inherited Create(AOwner);
 FAbout :=
 ’TBHexViewer (c) 1996 by Dr.Bob’;
 ParentFont := False;
 Font.Name := ’Courier New’;
 Font.Size := 10;
 Height := 342{+17};
 Width := 632;
 FFileName := ’’;
 FOffset := 0;
 FSize := 0;
 ScrollBars := ssNone;
 ColCount := 18;
 RowCount := 17;
 DefaultRowHeight := 19{+1};
 Cells[$0,0] := ’offset’;
 Cells[$1,0] := ’$1’;
 Cells[$2,0] := ’$2’;
 Cells[$3,0] := ’$3’;
 Cells[$4,0] := ’$4’;
 Cells[$5,0] := ’$5’;
 Cells[$6,0] := ’$6’;
 Cells[$7,0] := ’$7’;
 Cells[$8,0] := ’$8’;
 Cells[$9,0] := ’$9’;
 Cells[$A,0] := ’$A’;
 Cells[$B,0] := ’$B’;
 Cells[$C,0] := ’$C’;
 Cells[$D,0] := ’$D’;
 Cells[$E,0] := ’$E’;
 Cells[$F,0] := ’$F’;
 Cells[16,0] := ’$0’;
 ColWidths[0] := 76;
 for i:=1 to 16 do
 ColWidths[i] := 25;
 ColWidths[17] := 136
end {Create};

➤ Listing 6

procedure TBHexViewer.SetOffset(AnOffset: LongInt);
var i,j,k: Integer;
 Line: String;
begin
 AnOffset := AnOffset AND NOT BlockLine; { skip lower bits }
 if (AnOffset <> FOffset) or (AnOffset = 0) or (FOffset = 0) then begin
 FOffset := AnOffset;
 FillChar(FBlock,SizeOf(FBlock),#0);
 try
 if FFileName <> ’’ then
 try
 Seek(FFile,FOffset);
 BlockRead(FFile,FBlock,SizeOf(FBlock),FSize);
 except
 FOffset := 0;
 FSize := 0
 end
 else begin
 FOffset := 0;
 FSize := 0
 end;
 finally
 k := 0;
 for i:=1 to BlockLine do begin
 Cells[0,i] := ’$’+IntToHex(FOffset + Pred(i) * BlockChar,8);
 for j:=1 to BlockChar do begin
 Inc(k);
 if k <= FSize then
 Cells[j,i] := IntToHex(FBlock[k],2)
 else
 Cells[j,i] := ’’
 end;
 Dec(k,BlockChar);
 Line := ’’;
 for j:=1 to BlockChar do begin
 Inc(k);
 if k <= FSize then
 if FBlock[k] < 32 then
 Line := Line + ’ ’
 else
 Line := Line + Chr(FBlock[k])
 end;
 Cells[17,i] := Line
 end
 end
 end
end {SetOffset};

➤ Listing 7

far) and the StringGrid Options to
include the goEditing state so we
can edit the contents of the cells.

Preparing To Write
The first thing we need to add to
the TBHexViewer to make it a hex
overwriter is the fact that all
hidden private fields must be
accessible to the derived class
TBHexEditor. Note that since FFile
is a private field of TBHexViewer no
derived class can access the file.
This means that no inherited class
can ever hope to write to this file
again, since the FFile property is
inaccessible. So, while these fields
were private in our first version,
we really need to make them
protected in TBHexViewer first, to
make sure we can inherit from this
class and re-use these fields later.

After we’ve done this, we can
add two methods to TBHexEditor:
GetBlock and SetBlock, that will
work with these hidden protected
fields. Note that it’s the SetBlock
method that actually uses the
FBlock, FFile, FOffset and FSize
fields to write a (changed) block
back to the file. Without these hid-
den fields, we would have needed
to re-write the entire class – which

procedure TBHexViewer.KeyDown(var Key: Word; Shift: TShiftState);
begin
 if Key = 34 then begin
 { PgDown }
 if Size = BlockSize then
 Offset := Offset + BlockSize
 end else if Key = 33 then begin
 { PgUp }
 if (Offset >= BlockSize) then
 Offset := Offset - BlockSize
 else
 Offset := 0
 end;
 inherited KeyDown(Key,Shift);
end {KeyDown};

Type
 TBHexEditor = class(TBHexViewer)
 private
 FCopyBlock: TBlock;
 FChanged: Boolean;
 protected
 procedure SetOffset(AnOffset: LongInt); override;
 procedure SetFileName(AFileName: TFileName); override;
 procedure SetEditText(ACol, ARow: Longint; const Value: string);
 override;
 function GetEditLimit: Integer; override;
 function GetBlock: TBlock;
 procedure SetBlock(Const ABlock: TBlock);
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 published
 property Changed: Boolean read FChanged;
 end {TBHexEditor};
{...}
constructor TBHexEditor.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FAbout := ’TBHexEditor (c) 1996 by Dr.Bob’;
 FChanged := False;
 Options := Options + [goEditing]
end {Create};

➤ Below Listing 9➤ Above: Listing 8

August 1996 The Delphi Magazine 29

is one more reason to make sure
any design decision is made with
care! See Listing 10.

Unfortunately, the VCL is full of
examples where the designers
chose to make some fields private,
with the same horrible result. We
often need to rewrite an entire
class just to change its behaviour
(and changing the interface won’t
work for the VCL, since this means
a complete rebuild of the VCL and
for that we need some additional
files that Borland don’t provide...).

Change
Since the user can now change the
contents of the individual cells, we
need to make sure we somehow
detect that a change is made. For
this we need to write code for the
SetEditText event. First, we need to
check again if the row and column
are both within the range 1 to 16.
Next, we need to make sure only a
hex value is entered. See Listing 11.

To make sure the user can only
enter two characters we write one
line of code in the GetEditLimit
function to return a value of 2.

Finally, if the user has changed
some text (and hence FChanged is
set to True), we need to be sure to
save this text back to the FFile file.
There are a few occasions that
come to mind. Destroying the com-
ponent is one (a special one), but
also setting the offset of the file-
name to a new value. In the last two
cases, we need to check the value
of Changed and, if True, we simply
pop up a MessageDlg that asks for
confirmation to save the new infor-
mation in the block to disk. A call
to SetBlock (shown earlier) follows
to save the new block (Listing 12).

Destructive
Showing a MessageDlg in the de-
structor is not a good idea. You’ll

know what I mean if you try it your-
self. Here’s what you get: a brief
flicker of the MessageDlg followed
by the termination of the compo-
nent. And the MessageDlg result is a
simple cancel (or close), since the
block is not saved to file. The prob-
lem is that the dialog is shown for
a window (the StringGrid compo-
nent) that is being destroyed itself.

The solution is to go back to the
Windows API itself, and use the
good old MessageBox API, but this
time not with the Window Handle
of the StringGrid itself as parent,
but with the current Window that
has the focus (something you’ll get
after a call to GetFocus, another
Windows API). See Listing 13.

Now, when destroying the
TBHexEditor component, you will
see the message box shown in
Figure 2.

Property Editor
The TBHexViewer and TBHexEditor
components depend on the valid-
ity of the filename: at design time
we wouldn’t want to supply an

invalid name. That’s exactly where
property editors come in handy!
For the FileName properties of type
TFileName we can write a paDIalog
type property editor that just fires
an OpenDialog in its Edit procedure.

Check out my column in Issue 6
for more information and exam-
ples. The TFileNameProperty prop-
erty editor we use here is in the unit
FILENAME.PAS on the disk.

Register
As we’ve seen in the past few
issues, I’m in favour of writing com-
ponents in units without a Register
procedure. I prefer to use a sepa-
rate register unit where I register a
collection of components and asso-
ciated property and component
editors all at the same time.

For the TBHexViewer and
TBHexEditor components and the
TFileNameProperty editor we can
use the simple registration unit
included in DRBOBREG.PAS on the
disk. Place all four files in your
compiler search path and install
the DrBobReg unit.

function TBHexEditor.GetBlock: TBlock;
begin
 GetBlock := FBlock
end {GetBlock};
procedure TBHexEditor.SetBlock(Const ABlock: TBlock);
begin
 FBlock := ABlock;
 Seek(FFile,FOffset);
 BlockWrite(FFile,FBlock,FSize)
end {SetBlock};

➤ Listing 10

procedure TBHexEditor.SetEditText(ACol, ARow: Longint; const Value: string);
var i,j,k: Integer;
 Line: String;
begin
 if (ACol in [1..16]) and (ARow in [1..16]) and (Value <> ’’) then begin
 FChanged := True;
 k := Pred(ARow) * BlockChar;
 i := FCopyBlock[k + ACol];
 try
 if FileName = ’’ then
 raise Exception.Create(FileName);
 FCopyBlock[k + ACol] := StrToInt(’$’+Value);
 inherited SetEditText(ACol, ARow, Value);
 Line := ’’;
 for j:=1 to BlockChar do begin
 Inc(k);
 if k <= Size then
 if FCopyBlock[k] < 32 then
 Line := Line + ’ ’
 else
 Line := Line + Chr(FCopyBlock[k])
 end;
 Cells[17,ARow] := Line
 except
 FCopyBlock[k + ACol] := i;
 MessageBeep($FFFF)
 end
 end else
 inherited SetEditText(ACol, ARow, Value)
end {SetEditText};

➤ Listing 11

➤ Figure 2

30 The Delphi Magazine Issue 12

Next Time
It’s been a while since we’ve dealt
with Delphi Experts in detail. With
Delphi 2 we now have a new
category: AddOn Experts.

Next time, we’ll focus on this
special kind of Expert where we
need to do all the interfacing with
the outside world by ourselves (in
contrast with the standard Help,
Form or Project experts we are
used to). Be sure to check out our
Error Report Expert next month...

Bob Swart (aka Dr.Bob,
http://www.pi.net/~drbob/) is a
professional software developer
using Delphi and C++ for Bolesian,
free-lance technical author for
The Delphi Magazine and co-
author of The Revolutionary
Guide to Delphi 2. In his spare
time, Bob likes to watch video
tapes of Star Trek Voyager and
Deep Space Nine with his 2.5-year
old son Erik Mark Pascal.

procedure TBHexEditor.SetOffset(AnOffset: LongInt);
begin
 if (FileName <> ’’) and Changed {FCopyBlock <> GetBlock} and
 { save before exit } (MessageDlg(’Save Block to File?’,
 mtConfirmation, [mbYes, mbNo], 0) = mrYes) then SetBlock(FCopyBlock);
 inherited SetOffset(AnOffset);
 FCopyBlock := GetBlock;
 FChanged := False
end {SetOffset};

procedure TBHexEditor.SetFileName(AFileName: TFileName);
begin
 if (FileName <> ’’) and Changed {FCopyBlock <> GetBlock} and
 { save before exit } (MessageDlg(’Save Block to File?’, mtConfirmation,
 [mbYes, mbNo], 0) = mrYes) then SetBlock(FCopyBlock);
 FChanged := False;
 inherited SetFileName(AFileName);
 { which calls SetOffset }
end {SetFileName};

➤ Listing 12

destructor TBHexEditor.Destroy;
begin
 if (FileName <> ’’) and
 Changed {FCopyBlock <> GetBlock} and { save before exit }
 (WinProcs.MessageBox(GetFocus, ’Save Block to File?’, ’Close’,
 MB_ICONQUESTION or MB_YESNO) = IDYES) then
 SetBlock(FCopyBlock);
 inherited Destroy
end {Destroy};

➤ Listing 13

32 The Delphi Magazine Issue 12

	FileSize
	Pages?
	The Engine
	Visual Hex
	Hex Edit
	TBHexEditor
	Preparing To Write
	Change
	Destructive
	Property Editor
	Register
	Next Time

